Distance-based Algorithm for Biometric Applications in Meanwaves of Subject's Heartbeats
نویسندگان
چکیده
The authors present a new biometric classification procedure based on meanwave’s distances of electrocardiogram (ECG) heartbeats. The ECG data was collected from 63 subjects during two data-recording sessions separated by six months (Time Instance 1, T1, and Time Instance 2, T2). Two classification tests were performed with the goal of subject identification using a distance-based method with the heartbeat waves. In both tests, the enrollment template was composed by the averaging of the T1 waves for each subject. For the first test, we composed five meanwaves of different T1 waves; In the second test, five meanwaves of different groups of T2 waves were composed. Classification was performed through the implementation of a kNN classifier, using the meanwave’s Euclidean distances as features for subject identification. In the first test, with only T1 waves, 95.2% of accuracy was achieved. In the second test, using T2 waves to compose the dataset for testing, the accuracy was 90.5%. The T2 waves belonged to the same subjects but were acquired in different time instances, simulating a real biometric identification problem. We therefore conclude that a distance-based method using meanwaves of ECG heartbeats for each subject is a valid parameter for classification in biometric applications.
منابع مشابه
A new approach to fuzzy quantities ordering based on distance method and its applications for solving fuzzy linear programming
Many ranking methods have been proposed so far. However, there is yet no method that can always give a satisfactory solution to every situation; some are counterintuitive, not discriminating; some use only the local information of fuzzy values; some produce different ranking for the same situation. For overcoming the above problems, we propose a new method for ranking fuzzy quantities based on ...
متن کاملAn Efficient Algorithm for Fingercode-Based Biometric Identification
With the emerging trend of incorporating biometrics information in e-financial and e-government systems arisen from international efforts in anti-money laundering and counter-terrorism, biometric identification is gaining increasing importance as a component in information security applications. Recently, fingercode has been demonstrated to be an effective fingerprint biometric scheme, which ca...
متن کاملApplications of two new algorithms of cuckoo optimization (CO) and forest optimization (FO) for solving single row facility layout problem (SRFLP)
Nowadays, due to inherent complexity of real optimization problems, it has always been a challenging issue to develop a solution algorithm to these problems. Single row facility layout problem (SRFLP) is a NP-hard problem of arranging a number of rectangular facilities with varying length on one side of a straight line with aim of minimizing the weighted sum of the distance between all facility...
متن کاملSimilarity Measure Functions for Strategy-Based Biometrics
Functioning of a biometric system in large part depends on the performance of the similarity measure function. Frequently a generalized similarity distance measure function such as Euclidian distance or Mahalanobis distance is applied to the task of matching biometric feature vectors. However, often accuracy of a biometric system can be greatly improved by designing a customized matching algori...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کامل